人造太阳有什么用

| 晓晴

人造太阳是先进的超导托卡马克实验装置,也是国际热核聚变实验堆计划(ITER)建设工程。那么你知道人造太阳有什么用吗?下面小编就来解答一下大家的疑问。

人造太阳有什么用

人造太阳有什么用

和太阳一样,都是核聚变。聚变就是原子满足一定条件,比如高温高压,碰撞融合生成更重的原子同时释放出很多能量。

常见的是氢聚变成氦。氢的同位素有氕氘氚三种,氕原子核只有一个质子,氘氚原子核分别是一个、两个中子带个质子。太阳聚变是氕,也就是普通的氢。太阳的质量是33万个地球的质量,太阳内部的高温高压可以让普通的氢,也就是氕发生聚变。聚变释放出来极大的能量,让这么大质量的太阳保持这个形状不坍缩。

而我们目前只能让氢的同位素氘氚聚变,因为这俩聚变需要的条件比单纯的普通氢聚变要求少一些。毕竟我们没办法营造太阳上的高温高压环境。

所以人工核聚变,就是要营造高温高压的环境,让电子脱离原子核的束缚,引发原子核聚合。难点也集中在怎样创造并且保持这个高温高压环境以及怎样约束这个环境。高温环境用类似变压器的原理获得,约束有两种,惯性约束核聚变和磁约束核聚变。我国的全超导托卡马克核聚变实验装置,就是超导体线圈的磁约束核聚变。

因为要发电嘛,总不能炸开吧,所以我们可以看到新闻里中科院合肥物质科学研究院的EAST近期实现1亿摄氏度等离子体运行,这其实还是在实验营造聚变的环境。可控核聚变还有很长的路需要走。

不可控的核聚变早就有了,氢弹就是。用普通核裂变释放的能量去挤压氢同位素,然后轰的一下聚变开始就是氢弹了。

人造太阳原理

在太阳的中心,温度高达1500万摄氏度,气压达到3000多亿个大气压,在这样的高温高压条件下,氢原子核聚变成氦原子核,并放出大量能量。几十亿年来,太阳犹如一个巨大的核聚变反应装置,无休止地向外辐射着能量。

核聚变能是两个较轻的原子核结合成一个较重的原子核时释放的能量,产生聚变的主要燃料之一是氢的同位素氘。氘广泛的分布在水中,每一升水中约含有30毫克氘,通过聚变反应产生的能量相当于300升汽油的热能。采集氘并使之与相关物质聚变产生能量,就是人造太阳的原理。

20世纪50年代初,苏联科学家塔姆和萨哈罗夫提出磁约束的概念。苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。

托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。

几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。

中国人造太阳在哪个城市

人造太阳在安徽省合肥市科学岛,人造太阳一般指国际热核聚变实验堆计划(ITER),ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。

ITER装置是一个能产生大规模核聚变反应的超导托克马克。其装置中心是高温氘氚等离子体环,其中存在15兆安的等离子体电流,核聚变反应功率达50万千瓦,每秒释放多达1020个高能中子。等离子体环在屏蔽包层的环型包套中,屏蔽包层将吸收50万千瓦热功率及核聚变反应所产生的所有中子。

13465
Baidu
map